新工科背景下“高分子化学”课程教学改革探索

李瑞琦,王玉丹,宫琳丹

(哈尔滨工程大学材料科学与化学工程学院,黑龙江 哈尔滨 150001)

“高分子化学”是研究高分子化合物合成和反应的一门科学,是化工和材料类专业学生在具备了必要的有机化学、物理化学等基础知识之后,必修的专业主干课。该课程为高分子材料的制备和功能化提供重要的专业基础知识,是学生将来从事高分子材料研发和生产必备的理论基础,在专业课程体系中起着关键性作用。然而,由于该课程知识点繁琐,涉及概念、原理抽象,学生普遍反映难以理解,学习效果不佳,而且,在新工科背景下,传统的理工科已不足以应对社会发展,需要重构一些核心知识,重新整合课程体系,以实现更新的教育理念、更好的教学模式、更高的教育质量,满足大学毕业生创新和创业的需求,使毕业生能支撑新兴产业,甚至创造产业新领域。

按照新工科的要求,本文根据“高分子化学”等工科专业的特点,结合以往教学授课经验,在教学内容、教学模式、实践性教学方法等方面进行了一系列的探索,以期提高该课程的教学质量,培养出满足新工科建设要求的综合型高分子材料类专业人才。

“高分子化学”主要是学习如何以小分子原料合成高分子化合物的原理和方法,通过学习缩聚与逐步聚合、自由基聚合、自由基共聚合、离子聚合、配位聚合、开环聚合和聚合物化学反应等内容[1],使学生掌握高分子合成的原理和方法,明确如何寻找合适的单体和引发剂及合适的反应条件,以合成预定结构的聚合物。

“高分子化学”课程涉及基本概念繁多,学生记忆有困难[2]。以第一章内容为例,高分子的基本组成就涉及到重复单元(链节)、结构单元和单体单元;
谈到高分子的分子量,聚合物往往是同系聚合物的混合物,因此具有分散性,测得的分子量为平均分子量,又分为数均分子量、重均分子量、Z 均分子量、粘均分子量,分别对应不同的测试方法;
聚合物命名也有多种方法,仅习惯命名法就有中文和英文俗名,诸如PE(聚乙烯)、PP(聚丙烯)、ABS(丙烯腈、丁二烯和苯乙烯三元共聚物)等需要识记。另外,“高分子化学”课程中有些原理抽象,难以理解。诸如自由基聚合反应和离子聚合反应以及配位聚合反应和开环聚合反应的反应机理,单体结构对反应类型的选择和判定,聚合反应过程中影响聚合物分子量的链转移因素等。高分子的立体异构也是一个抽象而不好掌握的难点,学生往往将构型和构象混淆。构型是分子中由化学键所固定的原子在空间的几何排列,这种排列是稳定的,要改变构型需经过化学键的断裂和重组;
构象是由于单键内旋转而产生的分子在空间的不同形态,由于热运动,分子的构象是可以改变的,因此高分子链的构象是统计性的。

2.1 抓住经、纬线,有效梳理知识结构

尽管“高分子化学”课程所涉及知识点浩繁,貌似杂乱无章难以梳理,学生觉得难学,老师觉得难教,其实不然。经过细心总结,你会发现这门课程各章节知识点之间有着很强的规律性。正如“高分子化学”教材作者潘祖仁老先生在书序中指出,“以聚合反应和聚合物化学反应作主经线,以聚合物品种作副纬线,相互交织深化”。

高分子合成的聚合反应按照聚合机理可以分为由活性中心引发单体聚合的连锁聚合反应,和无活性中心,单体通过官能团间相互反应而发生的逐步聚合反应。大部分缩聚反应属于逐步聚合机理,对应于教材中第二章内容:缩聚和逐步聚合,介绍缩聚反应,缩聚反应的机理,缩聚动力学,缩聚物聚合度及其分布,这是清晰的经线(纵向),接下来聚酯、聚碳酸酯、聚酰胺等典型缩聚物的介绍就是纬线(横向),将抽象的机理、动力学等知识通过具体例子进行阐述说明。再来看由活性中心引发的连锁聚合反应,当活性中心是自由基时,对应第三章内容:自由基聚合,介绍自由基聚合反应特点和自由基产生体系,自由基聚合机理,聚合动力学,聚合物的聚合度及其分布,讲解说明过程中引用乙烯、氯乙烯、苯乙烯等单体聚合的典型例子。接下来讨论了聚合单体为两种不同结构单体时的聚合反应规律,对应第四章内容:自由基共聚合。自由基聚合反应的具体实施工艺,对应第五章内容:聚合方法,分别为本体聚合、溶液聚合、悬浮聚合和乳液聚合。当活性中心为离子时,对应的是第六章内容:离子聚合。活性中心为阴离子,对应的阴离子聚合,活性中心为阳离子时,对应的为阳离子聚合,具体授课内容为反应体系、聚合机理和聚合反应动力学。第七章的配位聚合是阴离子聚合性质,第八章的开环聚合反应属于离子聚合性质,均遵循阴、阳离子聚合反应原理。前八章介绍了高分子的合成反应特点(高分子生成),第九章介绍高分子之间所能发生的反应及其衍生出的功能高分子,为另一门课程“功能高分子”奠定了基础。

2.2 讲述科学故事,激发学习兴趣

学生在大量专业知识的学习过程中常常会觉得枯燥乏味,我们可以讲讲自然规律、科学原理发现背后的科学故事,从而激发学生的学习兴趣和对高分子科学的热爱。比如,绪论部分关于高分子科学的形成和发展就蕴藏着一段科学故事。什么是高分子呢?追溯高分子的发展历史,人们对高分子的认识和发展经历了一段曲折的过程。1861 年,英国化学家格雷阿姆认为高分子是由小的结晶分子形成,提出了高分子的胶体理论。在一定程度上解释了某些高分子的特性,得到许多化学家的认可。直到1922 年,德国化学家施陶丁格在研究天然橡胶加氢过程中得出高分子是由长链大分子构成的观点。这一观点一经提出,就遭到胶体论者的强烈反对和讥讽。但施陶丁格仍然坚持开展相关课题的深入研究,直到1926 年瑞典化学家斯维德贝格测量出蛋白质的分子量,从而证明了施陶丁格大分子理论的正确性。通过讲述科学故事,不仅激发了学生对高分子学科的兴趣和热爱,还培养了学生敢于质疑权威、维护真理的求是科学精神。在高分子学科,这样的科学巨匠不胜枚举,美国化学家Flory 也是其中之一。他通过反复试验发现聚合物增长链的活性与它的末端结构有关,而与高分子链的长度无关,并采用统计学方法推导出高分子分子量的数学表达式,称为“弗洛里分布”。专业教师在课堂上讲述这些科学故事的同时,要引导学生在国家新工科发展理念下,追求精益求精的“工匠精神”。

2.3 研讨性教学,变被动学为主动学

传统的教学模式是教师讲,学生听,学生一开始还能精神饱满,渐感枯燥后可能会跟不上教师思路,于是思想和精神也开小差去了,导致课堂教学效果差。为了更好地调动学生学习的积极性,变被动学习为主动学习,我们教学团队在传统教学模式中融入研讨式教学方法[3]。每次课上根据当次授课内容为学生布置课下讨论问题,于下次课上进行研讨,可采取主动发言或随机抽查的方式来进行,以便学生对授课内容有更好的理解。另外还可根据授课内容安排一到二次学生的报告机会,鼓励并指导学生课下查阅文献,培养学生主动获取知识的自学能力。比如,在讲授第五章聚合方法时,伴随乳液聚合技术的发展,涌现出种子乳液聚合、核壳乳液聚合、微乳液聚合等一系列新的乳液聚合技术。教师讲授了经典乳液聚合的基本概念、机理和动力学,可以让学生根据聚合速率、微结构、分子量及其分布等控制目标,结合乳胶粒度和粒度分布、颗粒结构和形貌、表面积等影响因素,讲述对新的乳液聚合方法的认识并列举实例。

有效的师生互动有助于提高学生在“高分子化学”学习过程中对知识的理解与掌握,形成正确的“高分子化学”学习方法和思维模式[7]。教师在研讨式互动过程中完成了“教”的任务,同时也和学生一起延伸“学”的活动。讨论过程方便教师及时准确地发现学生在学习上存在的问题,不断地对教学内容进行必要恰当的更新。传统的课堂线下教学教师和学生可以问答互动,讨论研究。即使疫情期间的网络教学,教师与学生也可以通过网络教学平台如雨课堂中的弹幕互动、腾讯会议教学模式中的小窗口对话来进行高效高质的师生活动。

2.4 结合实验、实践教学,培养学生科研实践能力

为使学生加深认识和理解高分子科学理论,有必要配套开设“高分子化学实验”课程,让学生自己动手进行高分子合成。在学习自由基聚合时,许多单体聚合至10%转化率后,都出现明显自动加速现象,即凝胶效应。以甲基丙烯酸甲酯(MMA)为例,进行本体聚合时,转化率低于10%,聚合体系从流动液体转变成粘滞状,转化率为10%~50%,体系从粘滞状转变为半固体,加速明显,直至80%转化率才减速终止。出现凝胶效应的原因,链自由基的终止反应包括链自由基的平移、链段重排和双基化学反应。随着反应进行,体系粘度增加,链段重排受阻,链终止速率常数kt下降;
40%转化率时,kt降低上百倍而kp变化不大,导致聚合反应加速。甲基丙烯酸甲酯本体聚合体系的微观动力学变化可以体现宏观体系特征,从实验现象可以明显观察到自由基聚合的凝胶效应,因此强调学生的实验课程效果,有助于深入理解“高分子化学”课程的理论知识。

另外,新工科背景下,需要培养创新型人才,可通过推行“本科生导师”制,为学生创造科研工作机会[4]。教师可根据自己的研究方向给学生提出研究导向,指导学生查阅文献资料,制定实验方案,并开展实验、测试以及数据分析和整理。这些过程不仅能激发学生的学习热情,还能培养学生独立思考和创新能力,为以后的科研活动打下坚实基础[5-6]。比如,高分子材料因为所具有的缓释、控释和靶向作用而广泛作为药物基因载体应用,不仅可以提高药物疗效,还能提高药物的安全性、合理性和精密性。其中,对药物起到保护和运输功能的载体就是通过两亲嵌段共聚物组装而形成的具有疏水性的核和亲水性的壳(“核-壳”)结构的胶束。嵌段共聚物聚乳酸聚丙烯酸是通过阴离子开环聚合和RAFT 聚合相结合的方法合成的。学生在实验过程中反复熟练课堂学习的阴离子开环聚合原理知识,真正做到活学活用。而且,应用到的RAFT聚合是可控自由基聚合技术中的一种,让学生在实际操作中体会“引入自由基控制剂,实现快引发、慢增长、无链转移和无链终止的活性自由基聚合技术”,不仅使学生对所学知识领悟深刻,还能培养学生的开拓钻研精神。

此外,教师还可以鼓励和指导学生参加挑战杯等创新创业大赛,提升学生的科研素养和团队合作精神,开阔视野,拓宽未来发展平台。用科研和科创活动促进学生学习专业知识,有利于学生将所学知识应用于实际,并且将理论和实践有机结合,有效避免了课堂灌输的枯燥乏味,寓教于研,更好地发挥科学育人的目的。

为应对新一轮科技革命与产业革命,将培养具有竞争力的科技创新型人才作为新工科培养目标,本文在这种大背景下对“高分子化学”课程的教学改革进行了探索。提出以经、纬线编织知识网,建立知识体系内部框架;
挖掘科学知识背后的故事,激发学生学习兴趣和培养科学精神;
采用研讨性教学模式,变学生被动式学习为主动学习;
紧密结合科学实验和科研实践,培养学生的实践创新能力。通过以上举措,在教学科研结合的氛围中实现师生互动,专业课堂才能成为培育科技型创新人才的重要途径。

猜你喜欢 分子量高分子自由基 陆克定:掌控污染物寿命的自由基科学中国人(2018年8期)2018-07-23二氧化钛光催化产生超氧自由基的形态分布研究分析化学(2017年12期)2017-12-25堆肥过程不同分子量水溶性有机物电子转移能力的演变及影响因素分析化学(2017年4期)2017-04-14口香糖残渣清除试剂相关探究现代商贸工业(2017年1期)2017-03-28太子参均一多糖的分离与表征中国民族民间医药·下半月(2017年2期)2017-03-20合成高分子化合物重要考点剖析中学生数理化·高三版(2016年12期)2017-03-02计算机模拟在大学高分子化学中的应用电子技术与软件工程(2016年24期)2017-02-23能延缓衰老的蛋白质百科知识(2016年16期)2016-10-29高分子有机化学的研究先驱中学生数理化·八年级物理人教版(2016年9期)2016-05-14高分子材料与工程:接地气的材料学中学生天地(B版)(2015年6期)2015-06-29

推荐访问:教学改革 工科 高分子