【美人的信息】 广州美人信息有限公司

  相比日常生活经验,量子世界不可思议,如爱因斯坦所说:“量子力学越是取得成功,它自身就越显得荒诞。”科技进步不但更新生产力,也更新着我们的思想  多年以前,高科技最牛的美国就已不把电子计算机列为高科技产品了。
  但巨高性能计算机仍是信息时代的高科技标志物件之一。2012年诺贝尔物理学奖发给了法国人塞尔日·阿罗什和美国人大卫·维恩兰德,这两位科学家的研究成果为新一代超级量子计算机的诞生提供了可能性。
  恶搞一下:法国人浪漫,而简称美国人为美人,那么,浪漫人美人=?
  文艺范儿的信息
  不往滥俗里想,那么,答案就是很文艺化的表达了。其实,“信息”最初是相当文艺范儿的,而不是20世纪中期才开始热门起来的科技词汇。
  一般认为,中文的“信息”一词出自南唐诗人李中《暮春怀故人》:“梦断美人沉信息,目穿长路倚楼台。”—— “美眉音信消息全无啊,梦里也梦不到你,我独自上楼倚栏,望眼欲穿望到长路尽头也不见你。”这么拙劣地意译,也让人感觉到深深的思念。
  其实,在李中之前一百多年,与李商隐齐名的唐朝大诗人杜牧《寄远》里就有“信息”了:“塞外音书无信息,道旁车马起尘埃。”还有比小杜更早的,唐朝诗人崔备的《清溪路中寄诸公》:“别来无信息,可谓井瓶沉。”
  宋朝的婉约派大词人柳永、李清照也用过“信息”这个词。因金兵入侵而流离失所的李清照思念当年安乐的故乡,心理上把信息的价格定成了真正的天价:“不乞隋珠与和璧,只乞乡关新信息。”——千年前的唐宋中国,其高科技虽是世界第一,但信息技术还是跟现在没法比的,要靠驿马、鸿雁甚至人步行来传递信息,速度慢而效率低,信息珍贵啊。
  在地球的西方呢?虽然香农1948年就划时代地把信息引为数学研究的对象,赋予其新的科学的涵义;至1956年,“人工智能”术语也出现了。可最早讨论数据、信息、知识与智慧之间关系的,却是得过诺贝尔文学奖的大诗人艾略特(T. S. Eliot;钱钟书故意译为“爱利恶德”)。他在1934年的诗歌“The Rock”中写道:
  Where is the Life we have lost in living?
  Where is the wisdom we have lost in knowledge?
  Where is the knowledge we have lost in information?
  Where is the information we have lost in data?
  我们迷失于生活中的生命在哪里?
  我们迷失于知识中的智慧在哪里?
  我们迷失于信息中的知识在哪里?
  我们迷失于数据中的信息在哪里?
  尽管第四句是好事者后加的,但诗人还是直指本质地提出了信息暴炸时代最困扰人的难题:如何不让我们的生命和智慧都迷失在数据中?
  量子计算机和量子信息技术,提供了一种让生命和智慧不要淹没在数据的海洋中的途径、工具和可能。
  量子与量子计算机
  量子理论是现代物理学的两大基石之一,为从微观理解宏观提供了理论基础。客观世界有物质、能量两种存在形式,物质和能量可以互相转换(见爱因斯坦的质能方程),量子理论就是从研究极度微观领域物质的能量入手而建立起来的。
  我们知道,微观世界中有许多不同于宏观世界的现象和规则。经典物理学理论中的能量是连续变化的,可取任意值,但科学家们发现微观世界中的很多物理现象无法解释。1900年12月14日,普朗克在解释“黑体辐射”时提出:像原子是一切物质的构成单元一样,“能量子(量子)”是能量的最小单元,原子吸收或发射能量是一份一份地进行的。这是量子物理理论的诞生。
  1905年,爱因斯坦把量子概念引进光的传播过程,提出“光量子(光子)”的概念,并提出光的“波粒二象性”。1920年代,德布罗意提出“物质波”概念,即一切物质粒子均有波粒二象性,海森堡等建立了量子矩阵力学,薛定谔建立了量子波动力学,量子理论进入了量子力学阶段。1928年,狄拉克完成了矩阵力学和波动力学之间的数学转换,对量子力学理论进行了系统的总结,成功地将相对论和量子力学两大理论体系结合起来,使量子理论进入量子场论阶段。
  “量子”词源拉丁语quantum,意为“某数量的某事物”。现代物理学中,某些物理量的变化是以最小的单位跳跃式进行的,而不是连续的,这个最小的基本单位叫做量子;或者说,一个物理量如果有不可连续分割的最小的基本单位,则这个物理量(所有的有形性质)是“可量子化的”,或者说其物理量的数值会是特定的数值而非任意值。例如,在(休息状态)的原子中,电子的能量是可量子化的,这能决定原子的稳定和一般问题。
  虽然量子理论与我们日常经验感觉的世界大不一样,但量子力学已经在真实世界应用。激光器工作的原理,实际上就是激发一个特定量子散发能量。现代社会要处理大量数据和信息,需要计算的机器(计算机)。量子力学的突破,使瓦格纳等于1930年发现半导体同时有导体和绝缘体的性质,后来才有了用于电子计算机的同时作为电子信号放大器和转换器的晶体管,再有了集成电路芯片,今天的一个尖端芯片可集聚数十亿个微处理器。
  随着计算机科技的发展,发现能耗导致发热而影响芯片集成度,限制了计算速度;能耗源于计算过程中的不可逆操作,但计算机都可找到对应的可逆计算机且不影响运算能力。既然都能改为可逆操作,在量子力学中则可用一个幺正变换来表示。1969年,威斯纳提出“基于量子力学的计算设备”,豪勒夫等于1970年代论述了“基于量子力学的信息处理”。1980年代量子计算机的理论变得很热闹。费曼发现模拟量子现象时,数据量大至无法用电子计算机计算,在1982年提出用量子系统实现通用计算以减少运算时间;杜斯于1985年提出量子图灵机模型。1994年,数学家彼得·秀尔提出量子质因子分解算法,因其可破解现行银行和网络应用中的加密,许多人开始研究实际的量子计算机。   在物理上,传统的电子计算机可以被描述为对输入信号串行按一定算法进行变换的机器,其算法由机器内部半导体集成逻辑电路来实现,其输入态和输出态都是传统信号(输入态和输出态都是某一力学量的本征态),存储数据的每个单元(比特bit)要么是“0”要么是“1”,即在某一时间仅能存储4个二进制数(00、01、10、11)中的一个。而量子计算机靠控制原子或小分子的状态,用量子算法运算数据,输入态和输出态为一般的叠加态,其相互之间通常不正交,其中的变换为所有可能的幺正变换;因为量子态有叠加性(重叠)和相干性(牵连、纠缠)两个本质特性,量子比特(量子位qubit)可是“0”或“1”或两个“0”或两个“1”,即可同时存储4个二进制数(00、01、10、11),实现量子并行计算(量子计算机对每一个叠加分量实现的变换相当于一种传统计算,所有传统计算同时完成,并按一定的概率振幅叠加,给出量子计算机的输出结果),从而呈指数级地提高了运算能力——一台未来的量子计算机3分钟就能搞定当今世界上所有电子计算机合起来100万年才能处理完的数据。用量子力学语言说,传统计算机是没有用到量子力学中重叠和牵连特性的一种特殊的量子计算机。从理论上讲,一个250量子比特(由250个原子构成)的存储器,可能存储2的250次方个二进制数,比人类已知宇宙中的全部原子数还多。而且,集成芯片制造业很快将步入16纳米的工艺,而量子效应将严重影响芯片的设计和生产,又因传统技术的物理局限性,硅芯片已到尽头,突破的希望在于量子计算。
  量子世界的死猫活猫与粒子控制
  喜好科技的文艺青年可能看过美剧《生活大爆炸》,其中有那只著名的“薛定谔猫”:一只被关在黑箱里的猫,箱里有毒药瓶,瓶上有锤子,锤子由电子开关控制,电子开关由一个独立的放射性原子控制;若原子核衰变放出粒子触动开关,锤落砸瓶放毒,则猫死。薛定谔构想的这个实验,被引为解释量子世界的经典。而量子理论认为,单个原子的状态其实不是非此即彼,或说箱里的原子既衰变又没有衰变,表现为一种概率;对应到猫,则是既死又活。若我们不揭开盖子观察,永远也不知道猫的死活,它永远处于非死非活的叠加态。
  宏观态的确定性,其实是亿万微观粒子、无数种概率的宏观统计结果。微观粒子通常表现为两种截然不同的状态纠缠一起,一旦用宏观方法观察这种量子态,只要稍一揭开箱盖,叠加态立即就塌缩了(被干扰破坏掉),薛定谔猫就突然由量子的又死又活叠加态变成宏观的确定态。用实验研究量子,首先要捕获单个的量子。即若不分离出单个粒子,则粒子神秘的量子性质便会消失。科学家们长期以来头疼的是,未找到既不破坏量子态,又能实际观测它的实验方法,他们只能在头脑中进行思想实验,而无法实际验证其预言。
  而阿罗什和维恩兰德的研究,发明了在保持个体粒子的量子力学属性的情况下对其进行观测和操控的方法,则可实证地说出薛定谔猫究竟是死猫还是活猫,而且为研制超级量子计算机带来了更大可能,因为量子计算机中最基础的部分——得到1个量子比特已获成功。
  光子和原子是量子世界中的两种基本粒子,光子形成可见光或其他电磁波,原子构成物质。他们研究光与物质间的基本相互作用,方法大同小异:维因兰德利用光或光子来捕捉、控制以及测量带电原子或者离子。他平行放置两面极精巧的镜子,镜间是真空空腔,温度接近绝对零度(约-273℃)。一个光子进入空腔后,在两镜面间不断反射。阿罗什则通过发射原子穿过阱,控制并测量了捕获的光子或粒子。他用一系列电极营造出一个电场囚笼,粒子像是被装进碗里的玻璃球;然后用激光冷却粒子,最终有一个最冷的粒子停在了碗底。阿罗什在捕获单个光子后,引入了特殊的里德伯原子,作为观测工具,从而得到光子的数据。维因兰德向碗中发射激光,通过观测光谱线而得到碗底粒子的数据。
  2007年以来,加拿大、美国、德国和中国的科学家都说自己研制出了某种级别的量子计算机,但到今天却仍无一个投入实用。光钟更接近现实,因为可操控单个量子,就能按意愿调控量子的振荡(相当于钟摆)频率,越高越精;目前实验的光钟,若从宇宙产生起开始计时,至今只误差5秒。光钟可使卫星定位和计算太空船的位置更精确……
  神话般的量子信息技术
  科幻作家克莱顿(著有《侏罗纪公园》、《失去的世界》等)在科幻小说《时间线》中,曾文艺化地描述量子计算,用了“量子多宇宙”、“量子泡沫虫洞”、“量子运输”、“量子纠缠态”、“电子的32个量子态”等让常人倍感高深的说法。其中一些如今正在证实或变现。
  如果清朝政府的通信密码不被日本破译,那么李鸿章甲午海战后去日本谈判时就很可能是另外一种结局,今天也不会有钓鱼岛的问题了。目前世界的密码系统大都采用单项数学函数的方式,应用了因数分解等数学原理,例如目前网络上常用的密码算法。秀尔提出的量子算法利用量子计算的并行性,能轻松破解以大数因式分解算法为根基的密码体系。量子算法中,量子搜寻算法等也能分分钟攻破现有密码体系。可说量子这种技术在现代军事上的意义不亚于核弹。但同时,量子信息技术也将发展出一种理论上永远无法破译的密码——量子密码。
  保密通信分为加密、接收、解密三个过程,密钥的保密和不被破解至为关键。量子密码采用量子态作为密钥,是不可复制的,至少在理论上是无破译的可能。量子通信是用量子态的微观粒子携带的量子信息作为加密和解密用的密钥,其密钥安全性不再由数学计算,而是由微观粒子所遵循的物理规律来保证,窃密者只有突破物理法则才有可能盗取密钥(根据海森堡的测不准原理,任何测量都无法穷尽量子的所有信息)。而且量子通信中,量子纠缠态(有共同来源的两个粒子存在着纠缠关系,似有“心灵感应”,无论距离多远,一个粒子的状态发生变化,另一个粒子也发生变化,速度远远超过光速,一旦受扰即不再纠缠。爱因斯坦称这种发生机理至今未解的量子纠缠为“幽灵般的超距作用”)被用于传输和保证信息安全,使任何窃密行为都会扰乱传送密钥的量子状态,从而留下痕迹。
  1984年,本奈特和布拉萨德提出了BB84保密通信协议。埃克特于1991年提出了E91通信协议。1992年又出现变体的B92通信协议。三者是目前应用最广泛的量子保密通信体系。量子通信实际应用中,目前的问题是如何得到单个光子源和减少光子信号在传输中的损耗等。目前,美国、中国、欧洲科学家在延长量子通信的距离上取得了领先成果。奥地利银行2004年采用了量子通信,瑞士2007年全国大选的结果传送采用了量子通信,中国2009年在安徽开通了量子政务网,由新华社和中国科技大学共同研发建设的金融信息量子通信验证网2012年正式开通。
  量子信息技术的发展,甚至可能让穿越时空成为现实。量子计算机和量子信息科技的前景,是让人感到美妙的前景。

推荐访问:美人 信息